Eleonora**Romeo**

contact Via Casteldelfino 43

10147 Torino (TO) Italy

Cel (0039) 389 4703637

■ eleonora.romeo @unito.it

in <u>elero93</u>

languages Italian mother tongue

English medium-high

Computer skills Crystal

Experience

Oct 20 - Jan 21	Department of Chemistry Recipient of scholarship	University of Turin
	Computational study of vanadyl-anatase catalyst for the select of NOx	ctive catalytic reduction
Oct 20 - Jan 21	l Department of Chemistry <i>laboratory assistant</i> Teaching support in laboratory	University of Turin
21 - 25/09/20	MSSC2020 school - Ab initio Modelling in Solid State Chemistry Tutor	Imperial College London
2012-2020	Private lessons in chemistry, physics and mathematics for middle and high s	school students
2018–2020	"Scuola dei Compiti" project <i>Tutor</i> Chemistry and Mathematics tutor for high school students	Comune di Torino
2013-2017	Department of Chemistry Students' representative	University of Turin
2013-2017	Sports summer camp Children's entertainer	SiSport Fiat
2015-2018	Giovani per Torino Volunteer	Torino

Education

2017-2020	Master Degree in Chemistry Thesis title: "Computational study of surface catalysis on anata Advisor: prof. <u>Anna Maria Ferrari</u> Mark 110/110	University of Turin se"
Sep-Nov 19	Erasmus Traineeship Project title: "Studying bulk and surface properties of titanium d Tutor: Giuseppe Mallia	Imperial College London ioxide"
Sep 19 and 20	O MSSC Crystal School	Imperial College London
2012-2017	Bachelor Degree in Chemistry	University of Turin
2007-2012	Scientific High School	Turin

Research Themes

Master degree thesis: The study is focused on the structure of the catalyst vanadyl-anatase system involved in the Selective Catalytic Reduction (SCR) process, which demolishes the polluting $NO_{x'}$, reducing it in N_2 , in presence of NH_3 . The attractiveness is modelling structure to show how the catalyst and the reducing agent interacts: this means examination of the anatase surface preferred, the vanadyl (VO^{2+}) coordination - octahedral on (001) anatase facet, tetrahedral on (101) - and the NH_3 inclinations to bind to Lewis (vanadium) or Brønsted acid site (V-OH), which seems to depend on both the surface and the coverage. All these valuation are done looking at the energies of static calculations. Since V reduce and re-oxidize during the process, Electronic Paramagnetic Resonance (EPR) parameters are calculated to prove the existence of V(IV) and complex which takes shape on the surface at this oxidation state.

Erasmus Traineeship project: Modelling anatase bulk, surface and slab. Also a furthered study of $VO(H_2O)_5$ complex is done, varying the basis set of vanadium, oxygen and hydrogen and the DFT functional; the aim was to practice with the Crystal program, with the notions learned during the computational chemistry course and to understand the electronic configuration of VO^{2+} .

Professional Skills

- Running calculation for geometry optimization, EPR parameters and simulating band structure and density of state (DOSS) with Crystal program

- Static calculations
- Modelling surface with cutting the slab and integrating adsorbed species
- Good knowledge of Gaussian and Orca
- Image manipulation with Avogadro, Jmol, DLV an Moldraw.

Licenses & Certifications

ECDL	European Computer Driving Licence
MIP	Lifeguard licence for swimming pool, river, lake and sea
CRI	First Aid

Soft Skills

Listening, Adaptability, Creativity, Desire to learn, Flexibility, Organization, Innovation, Logical thinking, Willingness to learn, Public speaking.

Interests

Professional - To continue learning, work and to develop a career as researcher.

 Be economically independent; have a balance between my work and my personal life; manage my time in the activities that I like, such as music, cooking, gardening, reading (essay, fantasy and science fiction books), sport like swimming, skiing, trekking.